L]

diagram in Fig. 8 assumes that for correct @ the output of
the @ model is K times as large as its input so that for
correct @ the inputs of the comparator are equal. The DC
error signal Vg resulting from the comparison is fed back
to the @ model circuit to adjust the bias voltages appro-
priately, as well as to the filter. In these two interacting
control loops, the frequency loop will converge indepen-
dently of the @ control loop, but to converge on the correct
value of @, the frequency must be accurate. Hence, the two
loops must operate together. The correct operation and
convergence of the frequency and @ control scheme in Fig.
8 has been verified by experiments (see Schaumann et al.
[3], Chapter 7, pp. 410-486) but because of the increased
noise, power consumption, and chip area needed for the
control circuitry, the method has not found its way into
commercial applications.
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CIRCULAR WAVEGUIDES'

CONSTANTINE A. BALANIS
Arizona State University
Tempe, Arizona

(edited by Eric Holzman
Northrop Grumman Electronic
Systems, Baltimore, Maryland)

1. INTRODUCTION

The circular waveguide is occasionally used as an alter-
native to the rectangular waveguide. Like other wave-

'This article is derived from material in Advanced Engineering
Electromagnetics, by Constantine Balanis, Wiley, New York, 1989,
Sect. 9.2.
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guides constructed from a single, enclosed conductor, the
circular waveguide supports transverse electric (TE) and
transverse magnetic (TM) modes. These modes have a
cutoff frequency, below which electromagnetic energy is
severely attenuated. Circular waveguide’s round cross sec-
tion makes it easy to machine, and it is often used to feed
conical horns. Further, the TE(,, modes of circular wave-
guide have very low attenuation. A disadvantage of
circular waveguide is its limited dominant mode band-
width, which, compared to rectangular waveguide’s max-
imum bandwidth of 2-1, is only 1.3. In addition, the
polarization of the dominant mode is arbitrary, so that
discontinuities can easily excite unwanted cross-polarized
components.

In this article, the electromagnetic features of the cir-
cular waveguide are summarized, including the trans-
verse and longitudinal fields, the cutoff frequencies, the
propagation and attenuation constants, and the wave im-
pedances of all transverse electric and transverse mag-
netic modes.

2. TRANSVERSE ELECTRIC (TE”) MODES

The transverse electric to z (TE®) modes can be derived by
letting the vector potential A and F be equal to

A=0 (1a)
F=a.F.(p,$,2) (1b)

The vector potential F must satisfy the vector wave equa-
tion, which reduces the F of (1b) to

VPF.(p, $,2) + B*Fx(p, $,2) =0 2)
When expanded in cylindrical coordinates, (2) reduces to

1 6%F, &2F,

°F, 10F, 1 N
p2 ad)z 022

2
2 " 5op +pF.=0 3

whose solution for the geometry of Fig. 1 is of the form
F.(p,¢.2)=[A1Jn(B,p) +B1Yn(B,p)]
x [Cg cos(m) + Dg sin(m )] (4a)

% [A3e—j/322 + Bge +jl322]
where
B2+ B2 =P (4b)

The constants Ay, By, Cq, Dy, A3, B3, m, f,, and f, can be
found using the boundary conditions of

Ey(p=a,$,2)=0 (5a)
The fields must be finite everywhere (5b)
The fields must repeat every 2= radians in ¢ (5¢)



644 CIRCULAR WAVEGUIDES

Figure 1. Cylindrical waveguide of circular cross section.

According to (5b), B; =0 since Y,,,(p =0) = c0. In addition,
according to (5¢)

m=0,1,2,3,... (6)

Consider waves that propagate only in the +z direction.
Then (4) reduces to

F (p, $.2) =Apndm(B,p)[Ca cos(map)

+ Dy sin(ma)le 7P

(M

From Eq. (7), the electric field component of E(;f can be
written as

B =1 %
=8, A B Cs costmey Y
+Ds sin(ma)le =
where
=i (8b)

Applying the boundary condition of (5a) in (8a), we then
have that

which is satisfied only provided that

Tn(B,@)=0= B,a=1p, = =" (10)
a

In (10) y},, represents the nth zero (n=1, 2, 3,...) of the

derivative of the Bessel function ¢/,, of the first kind of or-

der m(m=0, 1, 2, 3,...). An abbreviated list of the zeros

Imn Of the derivative J) of the Bessel function J,, is found

in Table 1. The smallest value of y,, is 1.8412 (m=1,
n=1).

Using (4b) and (10), 8, of the mn mode can be written as

/2 _ 2 _ g2 (1w
a ﬁ/ (/a) (11a)

whenﬁ>ﬁp=y‘ﬂ
a

(Bmn =

(ﬁz)mn: {O when ﬁ:ﬁczﬁp— )C;nn (llb)

a

/ 2
B~ =—jy/ (7#) —p
(ﬂz)mn = ’ e (].].C)

when < f,= Zmn
a

Cutoff is defined when (f,),,,, = 0. Thus, according to (11b)

B = 0c /i = 2nfe /5 = B, = 22 (12a)
R —— (12b)
2na./jie

By using (12a) and (12b), we can write (11a)-(11c) as
B N\2 8. 2
-5 o)
(ﬁz)mn = \/ },/ 2 \/ 2
= 1— (Zfmn) — 1— (%
ni- () =n1-(5)

when 1> fo = (o),

A
EJ(P:a, (b&Z):ﬁp o J;’n(ﬁpa)[CZ cos(m¢) (133)
¢ )

+Ds sin(mg)le 7/ =0 (Bmn={0 When f=fe= (o) (13b)

Table 1. Zeros y/,,,, of Derivative J',,,(}/,n) =0 (n =1,2,3,...) of Bessel Function «J,,(x)
m=0 m=1 m=2 M=3 m=4 m=5 m=6 m="17 m=8 m=9 m=10 m=11
n=1 3.8318 1.8412 3.0542 4.2012 5.3175 6.4155 7.5013 8.5777 9.6474 10.7114 11.7708 12.8264
n=2 7.0156 5.3315 6.7062 8.0153 9.2824 10.5199 11.7349 12,9324 14.1155 15.2867 16.4479 17.6003
n=3 10.1735 8.5363 9.9695 11.3459 12.6819 13.9872 15.2682 16.5294 17.7740 19.0046 20.2230 21.4309
n=4 13.3237 11.7060 13.1704 14.5859 15.9641 17.3129 18.6375 19.9419 21.2291 22.5014 23.7607 25.0085
n=>5 16.4706 14.8636 16.3475 17.7888 19.1960 20.5755 21.9317 23.2681 24.5872 25.8913 27.1820 28.4609




e e
= i) () 2= —jﬁW

When f<fc = (fC)mn (130)

(.Bz)mn =

The guide wavelength A, is defined as

2n

ednn = 55

(14a)

which, according to (13a) and (13b), can be written as

, 2n A
(/Lg )mn = =

- (6 - (5)

B) Whenf>fC:(ﬂ)mn
(14b)

(Ag)mn ={00 when f =(fe),, (14c)

In (14b) 4 is the wavelength of the wave in an infinite me-
dium of the kind that exists inside the waveguide. There is
no definition of the wavelength below cutoff since the wave
is exponentially decaying and there is no repetition of its
waveform.

According to (12b) and the values of y,, in Table 1, the
order (lower to higher cutoff frequencies) in which the
TE? , modes occur is TE3;, TE};, TE,, and so on. It should
be noted that for a circular waveguide, the order in which
the TE; , modes occur does not change, and the bandwidth
between modes is also fixed. For example, the bandwidth
of the first single-mode TE3; operation is 3.042/1.8412=
1.6588 : 1, which is less than 2: 1. This bandwidth is fixed
and cannot be varied. A change in the radius only varies,
by the same amount, the absolute values of the cutoff fre-
quencies of all the modes but does not alter their order or
relative bandwidth.

The electric and magnetic field components can be
written from Eq. (7) as

+__lan+
» = T 0

= — A 2 J(B,p)Cy sin(me)  (152)
ep

+ Dy cos(ma)le P>

10F;

+:
* "¢ Op

= A 0,00 cosmey 1)

+ Dy sin(ma)le P>
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Ef =0 (15¢)

1 &Ff

t_ - "z

H" =/ wue Opoz
= A 2P g 5, p0Cs cosmey P

wue
+ Dy sin(m)le P+
1 182F+ mp, 1
Hf=—-j—= z =_Amn—Z_Jm

¢ J wue p 0¢oz wue p (Bop) (15e)

x [—=Cq sin(m¢) + Dqy COS(mq,’))]e_j/}zZ

2
i Im(B,p0)

R . A
Hz = —J _+ﬁ Fz =_.]Amn_
: e (15f)

x [Cy cos(m) + D sin(me)le -
where

) 0

— 15
B0 (15¢)

By using (15a)-(15f), the wave impedance (Z; Z);E of the
TE: , (HZ,) modes in the +z direction can be written as

z" =(Z+Z)TE=E=_§= O
me W m Hy Hy  (B)mn

(16a)

With the aid of (13a)-(13c) the wave impedance of (16a)

reduces to
\/E
wu _ € _ n
Zh, =2 = (fﬂ ¢ A% %(f)
ﬁ% f) 1’(f> \r

when f > f. = (fC)mn

(16b)

% =00 Whenfzf(::(fc)mn (160)

\/E
wu . & . n

Zo—giymo) e e e
co ‘W(?) - W?) )

when f <fe=(fo)nn

Zhy =2 ={

(16d)

By examining through (16b)-(16d), we can make the
following statements about the impedance.

1. Above cutoff it is real and greater than the intrinsic
impedance of the medium inside the waveguide.

2. At cutoff it is infinity.
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3. Below cutoff it is imaginary and inductive. This in-
dicates that the waveguide below cutoff behaves as
an inductor that is an energy storage element.

3. TRANSVERSE MAGNETIC (TM?) MODES

The transverse magnetic to z (TM?) modes can be derived
in a similar manner as the TE® modes of Section 2 by
letting

A=ad.A(p,$,2) (17a)
F=0 (17b)

The vector potential A must satisfy the vector wave equa-
tion, which reduces for the A of (17a) to
VZA.(p, $.2) + B*A.(p. $,2) =0 (18)

The solution of (18) is obtained in a manner similar to that
of (2), as given by (4), and it can be written as

Ax(p, ¢,.2) =[Arm(B,p) + B1Ym(B,p)]

x [Ca cos(m) + D sin(me)] (19a)
x [Age 7% 4 Bye Tih2]
with
B2+ 2 =p (19b)

The constants Ay, By, Cy, Dy, A, Bs, m, ,, and 5, can be
found using the boundary conditions of

Ey(p=a,p,2)=0 (20a)
or
E.=(p=a,¢9,2)=0 (20Db)
The fields must be finite everywhere (20c¢)
The fields must repeat every 2z radians in ¢ (20d)

According to (20c), B; =0 since Y,,,(p =0)= 0. In addi-
tion, according to (20d),

Considering waves that propagate only in the +z direc-
tion, (19a) then reduces to

A (p, ¢,2) =Bundm(P,p)[Ca cos(map)

+ Dy sin(ma)le 7P*

(22)

The eigenvalues of , can be obtained by applying either
(20a) or (20b).
From Eq. (22), we can write the electric field component

Ef as
62
(=
‘BQ
—JByin =T (B,p)[C2 cos(me)
wpe

1
‘]a)us

E+

+ [)’Z)A;

(23)

+ Dy sin(m¢)le 7P+

Application of the boundary condition of (20b) using (23)
gives

f2
Ly

E2+ (p =a, ¢,Z) = _.]an
wpe

x [Cy cos(me) + Dy sin(me)le P> =0
(24)

which is satisfied only provided that

an

In(f,0)=0= fa =1, = f,= (25)

In (25) ymn represents the nth zero (n=1, 2, 3,...) of the
Bessel function oJ,,, of the first kind of order m (m =0, 1, 2,
3,...). An abbreviated list of the zeros y,,, of the Bessel
function J,, is found in Table 2. The smallest value of y,,,
is 2.4049 (m =0, n=1).

By using (19b) and (25), 8, can be written as

B — 2=/ — ()?

BImn = , (26a)
— Lmn
m=0,1,2,3,... (21) when f> f, = ="

Table 2. Zeros 1, of Jp,(mn) =0 (n=1, 2, 3,...) of Bessel function J,,(x)
m=20 m=1 m=2 M=3 m=4 m=5 m=6 m="7 m=28 m=9 m=10 m=11
n=1 2.4049 3.8318 5.1357 6.3802 7.5884 8.7715 9.9361 11.0864 12.2251 13.3543 14.4755 12.8264
n=2 5.5201 7.1056 8.4173 9.7610 11.0647 12.3386 13.5893 14.8213 16.0378 17.2412 18.4335 19.6160
n=3 8.6537 10.1735 11.6199 13.0152 14.3726 15.7002 17.0038 18.2876 19.5545 20.8071 22.0470 23.2759
n=4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801 20.3208 21.6415 22.9452 24.2339 25.5095 26.7733
n=>5 149309 16.4706 17.9598 19.4094 20.8269 22.2178 23.5861 24.9349 26.2668 27.5838 28.8874 80.1791




(B)nn={0 whenp=p.=p,=%=  (26b)

J\/W y’””

(Bdmn = (26¢)
when f<f,= L Z"

By following the same procedure as for the TE® modes,
we can write the expressions for the cutoff frequencies
(fo)mn, propagation constant (f3,),,,, and guide wavelength
(Ag)mn as

A @7)

2na./ie
== () - ()

(B = \/ N\ \/ N
=nf1- () =mf1- (5)
when > f. = (fo)n
(28a)
(ﬁz)mnz{o Whenfzﬁl:(fc)mn (28b)
== -in (% s - (% ﬁ° -1
Bmn = RN 2
z/mn B . Ymn . é B
=) 1= -y (f) 1
Whenf<fc=(fc)mn
(28¢)
, 2n A
(’“g)mn: 5 = 3 Whenf>fc:(fc)mn
Wl‘(?) W(?)
(29a)
(Ag)mn =100 when f =fc=(fc)y, (29b)

According to (27) and the values of y,,, of Table 2, the
order (lower to higher cutoff frequencies) in which the TM?
modes occur is TMy;, TM;;, TMs;, and so forth. The band-
width of the first single-mode TM,; operation is 3.8318/
2.4059 =1.5927:1. Comparing the cutoff frequencies of the
TE? and TM? modes, as given by (12b) and (27) along with
the data of Tables 1 and 2, the order of the TE? , and TM?,,
modes is that of TE1; (3j; =1.8412), TMo1, (301 = 2.4049),
TE21 (X/Zl = 30542), TE()]_ (161 = 38318) = TMll
(141 =3.8318), TE3; (5, =4.2012), and so forth. The dom-
inant mode is TE;; and its bandwidth of single-mode op-
eration is 2.4049/1.8412=1.3062:1. Plots of the field
configurations over a cross section of the waveguide,
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and/or TM?

mn

both E and H, for the first 30 TE?, ,
are shown in Fig. 2 [1].

It is apparent that the cutoff frequencies of the TE,,
and TM;,, modes are identical; therefore they are referred
to here also as degenerate modes.

The electric and magnetic field components can be
written using (22) as

modes

24+
ooy L PA
P wpe Opoz

ﬁpﬁz

= =B LZ T, (B,p) (50)

x [Cq cos(ma) + Dy sin(m¢)le /7=

.1 10%Af
—j—=
wue p 0oz

S+

= - an ;ni Jm( ﬂpp) (3Ob)
pep

x [~Cy sin(m¢) + Dy cos(m¢)le 7=
B =i (Sl
ope \ 0z

B (30¢)
= —JBmn wiszm(ﬁpp)

x [Cy cos(m) + Dy sin(m¢)le 7F<

1 1 8A+ 1
+= mn— ~ Ju( B,p)
wp 6([> wp (30d)

X [—Cz sm(qu) + Dy COS(m(j))]e*jﬂZZ

10Af B, .,
Hf =~ =% = B, L J,(B,p)
noop n (30e)

x [Cy cos(m) + Dy sin(m¢p)le P+

H* =0 (30f)

4
where

0

= m (30g)

By using (30a)—(30f), the wave impedance in the +z di-
rection can be written as

ES E; ()
z — ¢ _ z/mn
( Zy ) HJr - H; T we (31)
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Figure 2. Field configurations of first 30 TE® and/or
TM? modes in a circular waveguide. (Source: C. S. Lee,
S. W. Lee, and S. L. Chuang, Plot of modal field distri-
bution in rectangular and circular waveguides, IEEE
Trans. Microwave Theory Tech., © 1985, IEEE.)

Zi ‘“‘-\\\i“:"'-_//;ﬁ N
(e
“‘“Z/"'A‘\ \ill;

U

(1
AP 72N

B Sy

With the aid of (28a)—(28c) the wave impedance of (31)

reduces to

mn we

when > f. = (fo)n

(ZJZ)Bf:{%:o when £ =fu = ()

Ay — = J\/
e ] 17<?> . 3 2 o we e\ \f
A%) 4_\5\/1_ (7) —n\/l—( ) Z3m

7

(32a)

when £ <fe = (o)

(32b) Examining (32a)-(32c¢) we can make the following state-
ments about the wave impedance for the TM® modes.



1. Above cutoff it is real and smaller than the intrinsic
impedance of the medium inside the waveguide.

2. At cutoff it is zero.

3. Below cutoff it is imaginary and capacitive. This
indicates that the waveguide below cutoff behaves
as a capacitor that is an energy storage element.

Whenever a given mode is desired, it is necessary to
design the proper feed to excite the fields within the wave-
guide and detect the energy associated with such modes.
To maximize the energy exchange or transfer, this is ac-
complished by designing the feed, which is usually a probe
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Figure 2. (Continued).

or antenna, so that its field pattern matches that of the
field configuration of the desired mode. Usually the probe
is placed near the maximum of the field pattern of the de-
sired mode; however, that position may be varied some-
what in order to achieve some desired matching in the
excitation and detection systems. Shown in Fig. 3 are sug-
gested designs to excite and/or detect the TE{; and TMy,
modes in a circular waveguide, to transition between the
TE;( of a rectangular waveguide and the TE;; mode of a
circular waveguide, and to couple between the TEq of a
rectangular waveguide and TM(; mode of a circular wave-
guide.
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(a) (b)

(c) (d)

Figure 3. Excitation of TE,,, and TM,,, modes in a circular
waveguide: (a) TE{; mode; (b) TMg; mode; (¢) TE;( (rectangular)-
TE;; (circular); (d) TE,q (rectangular)-TMy; (circular).

4. ATTENUATION FROM OHMIC LOSSES

It has been shown that the attenuation coefficients of the
TE,, (n=1,2,...) modes in a circular waveguide monoton-
ically decrease as a function of frequency [2,3]. This is a
very desirable characteristic, and because of this the ex-
citation, propagation, and detection of TE,, modes in a
circular waveguide have received considerable attention.
The attenuation coefficient for the TE? = and TM?  modes
inside a circular waveguide are given, respectively, by

TE:,,

mn 72
any|1— (—c)
Voo (33a)

™,
R 1
™ _ fis
o = === ND/m (33)
1— (%
(¥)
where
_ Jor
Rs= % (34)

Plots of the attenuation coeficient versus the normalized
frequency f/f., where f. is the cutoff frequency of the dom-

inant TE{; mode, are shown for six modes in Fig. 4a and b
for waveguide radii of 1.5 and 3 cm, respectively. Within
the waveguide is free space and its walls are made of cop-
per (6="5.7 x 107 S/m).

It is evident from the results of the preceding example
that as f/f becomes smaller the attenuation coefficient de-
creases monotonically (as shown in Fig. 4), which is a de-
sirable characteristic. It should be noted that similar
monotonically decreasing variations in the attenuation
coefficient are evident in all TEj, modes (n=1,2,3,...).
According to (15a)-(15f), the only tangential magnetic
field component to the conducting surface of the wave-
guide for all these TE(, (m =0) modes is the H, compo-
nent, while the electric field lines are circular. Therefore
these modes are usually referred to as circular electric
modes. For a constant power in the wave, the H, compo-
nent decreases as the frequency increases and approaches
zero at infinite frequency. Simultaneously the current
density and conductor losses on the waveguide walls
also decrease and approach zero. Because of this attrac-
tive feature, these modes have received considerable
attention for long-distance propagation of energy, espe-
cially at millimeter-wave frequencies. Typically attenua-
tions as low as 1.25dB/km (2 dB/mi) have been attained
[2]. This is to be compared with attenuations of 120 dB/km
for WR-90 copper rectangular waveguides, and 3 dB/km
at 0.85 um, and less than 0.5 dB/km at 1.3 pm for fiberoptic
cables.

Although the TE,, modes are very attractive from the
attenuation point of view, there are a number of problems
associated with their excitation and retention. One of the
problems is that the TEqy; mode, which is the first of the
TEy,, modes, is not the dominant mode. Therefore in order
for this mode to be above its cutoff frequency and propa-
gate in the waveguide, a number of other modes (such as
the TEII; TM01> TE21, and TMll) with lower cutoff fre-
quencies can also exist. Additional modes can also be
present if the operating frequency is chosen well above
the cutoff frequency of the TE(y; mode in order to provide
a margin of safety from being too close to its cutoff fre-
quency.

To support the TEq;; mode, the waveguide must be
oversized and it can support a number of other modes.
One of the problems faced with such a guide is how to ex-
cite the desired TEy; mode with sufficient purity and sup-
press the others. Another problem is how to prevent
coupling between the TEy;; mode and undesired modes.
The presence of the undesired modes causes not only high-
er losses but also dispersion and attenuation distortion to
the signal since each exhibits different phase velocities
and attenuation. Irregularities in the inner geometry, sur-
face, and direction (bends, nonuniform cross sections, etc.)
of the waveguide are the main contributors to the coupling
to the undesired modes. However, for the guide to be of
any practical use, it must be able to sustain and propagate
the desired TE(p; and other TE,, modes efficiently over
bends of reasonable curvature. One technique that has
been implemented to achieve this is to use mode conver-
sion before entering the corner and another conversion
when exiting to convert back to the desired TE,,
mode(s).
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Another method that has been used to discriminate
against undesired modes and avoid coupling to them is
to introduce filters inside the guide that cause negligible
attenuation to the desired TE,, mode(s). These filters in-
troduce cuts that are perpendicular to the current paths of
the undesired modes and parallel to the current direction

Figure 4. Attenuation for TE;, and TM;,
modes in a circular waveguide: (a) a=1.5cm;
(b) a=3cm.

of the desired mode(s). Since the current path of the un-
desired modes is along the axis (z direction) of the guide
and the path of the desired TE(, modes is along the
circumference (¢ direction), a helical wound wire
placed on the inside surface of the guide can serve as a
filter that discourages any mode that requires an axial
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Table 3. Summary of TE; , and TM;,, Mode Characteristics of Circular Waveguide

m=0,1,2,...,
TE?,,
n=12,3,...

m=0,1,2,3,...,
™,

n=1234,...

By A5, Ca sintm) + D costmp e - ~Bun 25T, (5,p1Ca costm) + D sinimple
B} A2, (8,0C o5(mg) + Dy sinimep e 71 B e T (B ~Casinmy) + Dy costm bl <
2
£} 0 BT pCo cos(m) + D sinim e
H AT, 5, ICa costm) + Dasinimip e - By T B, ~Ca costmh)+ Dasin(mipe <
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component of current flow but propagates the desired
TE,, modes [3,4].

Another means to suppress undesired modes is to in-
troduce within the guide very thin baffles of lossy material
that will act as attenuating sheets. The surfaces of the
baffles are placed in the radial direction of the guide so
that they are parallel to the E, and E, components of the
undesired modes (which will be damped) and normal to
the £, component of the TE,,, modes that will remain un-
affected. Typically two baffles are placed in a crossed pat-
tern over the cross section of the guide.

A summary of the pertinent characteristics of the TEZ |
and TM: , modes of a circular waveguide are found listed
in Table 3.
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COAXIAL LINE DISCONTINUITIES
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Various types of coaxial-line discontinuities have been dis-
cussed in the literature [1-4], including: capacitive gaps,
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open-ended configuration, impedance steps, capacitive
windows, T junctions, small elliptical and circular aper-
tures, aperture coupling between two coaxial lines, and
bifurcation of a coaxial line. The configurations and the
equivalent circuits for some of the discontinuities are
shown in Fig. 1. The mode-matching technique with
variational formulation is the commonly used approach
to arrive at the equivalent-circuit parameters of disconti-
nuities. The available results for some of these disconti-
nuities are summarized in the following sections.

1. CAPACITIVE GAPS IN COAXIAL LINES

A gap in the center conductor of a coaxial line, as shown in
Fig. 1a, introduces mainly a series capacitance in the line.
This type of discontinuity finds common use in microwave
filters, DC blocks, and coaxial-line reentrant cavity.
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' Figure 1. Discontinuities in coaxial lines
and their equivalent circuits.



