Transmission-Line Transformers

Categories of Transmission-Line Transformers

- Single $\lambda/4$ lines and cascades of $\lambda/4$ lines
- Distributed element approximations of lumped element (LC) designs
- Short, highly coupled unit element structures
 - Ruthroff
 - Guanella

- Half octave performance from single quarter-wave line transformer
- Nearly 2-octave performance from 3 stepped quarter-wave lines
- Comparison for 50 Ω to 100 Ω transformation (BW also depends on this)

$\frac{1}{4}$ λ Z INVERTER

STEPPED Z TRANSFORMER

Stepped $\frac{1}{4}\lambda$ Transformer Calculation

DOWNLOAD FROM: http://k5tra.net/

Transmission-Line Transformer – Elements

=

CONVENTIONAL TRANSFORMER

TRANSMISSION-LINE TRANSFORMER

SYMBOLIC

PHYSICAL

Ruthroff Transformers

- Transmission line 'unit' element
- Physically short lines (length < λ / 8)
- Analysis based on currents
- $R_1 / R_2 = (I_2 / I_1)^2 = 4$
- Ferrite loading extends bandwidth (low end)

Ruthroff Type 9:1 Transformer

- Transmission line 'unit' elements
- Physically short lines (length < λ / 8)
- Analysis based on currents
- $R_1 / R_2 = (I_2 / I_1)^2 = 9$
- Ferrite loading extends bandwidth (low end)

Various Unbalanced Transformers

- Transmission line unit element building blocks
- Parasitic even mode characteristic impedance should be large (k → 1)
- Z ratio available as squares of integer ratios
- First order analysis on basis of port current ratio
- Multiple line structures must have at least one shared current path
- DC path is present

Guanella (4:1) Balanced Transformer

- Two 'unit' elements can be used to form a balanced 4:1 transformer
- Analysis based on currents
- $R_1 / R_2 = (I_2 / I_1)^2 = 4$
- Ferrite loading extends bandwidth (low end)

Several Balanced Transformers

- Transmission line unit element building blocks
- Parasitic even mode characteristic impedance should be large (k → 1)
- Z ratio available as squares of integer ratios
- First order analysis on basis of port current ratio
- Multiple line structures must have at least one shared current path
- DC path is present

Guanella Transformer and Choke Balun

- Pushpull PA match example
- Ferrite loaded 'unit' elements
- Guanella transformer from coax
- Choke balun (1:1) from coax

More Guanella Transformers in PA Output

- Guanella transformer from coax
- 'Unit' elements with and without ferrite loading

Coupled Lines - Symmetric

- Two transmission-line modes
 - Even (or common) mode
 - Odd (or differential) mode
- Impedances set coupling level

	METAL	METAL		
DIELECTRIC	;			
		METAL		

Coupling Coefficient

$$k = \frac{Zoe/Zoo - 1}{Zoe/Zoo + 1}$$

$$k = \frac{CM}{CM + C}$$

$$k = \frac{CM}{CM + C} = \frac{\frac{CM}{C}}{\frac{CM}{C}}$$

Zoe/Zoo = (C+2CM)/C

• Zoo sets the desired Zo

• Zoe should be large !

STATIC CAPACITANCE REPRESENTATION FOR SYMMETRIC STRUCTURES

 $Zoe/Zoo \rightarrow \infty \Rightarrow K \rightarrow 1$

 $C_M/C \rightarrow \infty \Rightarrow K \rightarrow 1$

Coupled Lines - Asymmetric

- Asymemetric coupled lines
 - Two modes: C and π
 - Similar to 'Even' and 'Odd'
- Impedances set coupling level

	METAL		METAL	
DIELECTRIC				
		METAL		

Coupled Lines - Asymmetric

- Broadside coupling is better
- Asymmetric: slightly unbalanced

Coax Over Ground

- Coax coupling is very good
- Asymmetric: slightly unbalanced

Coupling Coefficient Relationship to Zoe/Zoo

Coupling Coefficient Relationship to C_m/C

Ideal Ruthroff Loss vs Length (and Zo)

- Analysis of original 4:1 Ruthroff transformer (k = 1)
- Normalized port impedances (1 Ω and 4 Ω)
- Best BW from Zo=2
- Lowest loss over less BW from Zo=1

Ruthroff Transformer Frequency Compensation

- Non-ideal coupling is modeled by leakage and magnetizing inductance
- Cs provides DC block and low frequency compensation
- CP1 and CP2 provide high frequency compensation
- If coupling is poor, or Zoo is not optimal, Cp can be used to tune the transformer for the desired frequency band

CS CS CP2 CP2 CP2 CP1 FREQUENCY COMPENSATION

Ruthroff Transformer Test Laminates

9:1 TRANSFORMER

4:1 TRANSFORMER

Flip Chip Multiband PA with Ruthroff 4:1

RUTHROFF 4:1 TRANSFORMER

Ruthroff Relationship to Auto Transformers

Guanella Relationship to Auto Transformers

GUANELLA 4:1 BALANCED TRANSFORMER (BALBAL)

- The Guanella balanced structure can be redrawn as an auto transformer special case (N=2). - note couplings –
- A more general auto transformer has secondary coupled to both primary segments
- Transformation can be set by setting the taps (1/N is tapped fraction of total primary)

2i 2i i GUANELLA 4:1 SHOWN AS AUTO TRANSFORMER

ODD MODE CURRENTS

N:1 TURNS RATIO VOLTAGE BALANCE N۰i **GENERAL N:1 BALANCED AUTO TRANSFORMER**

Guanella and Auto Transformers

Wideband Flip Chip PA Module

- 800 MHz 2 GHz
- WCDMA operation

Pushpull Multimode PA

- Laminate contains modified Guanella transformer stacked with choke balun
- Full 824 915 MHz operation
- WCDMA, EDGE, and GSM

Low V Pushpull Multimode PA

5mm x 4mm PA MODULE (.20" x .16")

- Low Vcc operation provided by high ratio transformer
- Three metal layers are used in a 9:1 auto-transformer
- Choke balun

GaAs Pushpull PA Circuit Blocks

ARRAY OF OUTPUT CELLS WITH INTERLEAVED MANIFOLD AND 3RD HARMONIC TUNING

INTERSTAGE GUANELLA TRANSFORMER

INPUT CHOKE BALUN and GUANELLA TRANSFORMER

Summary

- Transmission-line transformers
 - 3 categories
- Coupled lines
 - Coupling coefficient
 - Capacitive compensation
- Unbalanced or balanced forms
 - Ruthroff : unbalanced
 - Guanella: balanced
- Autotransformers
- Some examples

