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Filters for SSB Direct Conversion Transceivers
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OVERVIEW

• SSB (Image Reject) direct conversion – phasing 

method

• Allpass approach to constant phase difference

o Active filters for audio-baseband quadrature

o Passive filters for RF quadrature

• Active filter sensitivity is important consideration

o Audio phase difference networks

o Audio band limiting LPF (or BPF)
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TX / RX SSB DIRECT CONVERSION
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DUAL ALLPASS 90° PHASE SPLITTER
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DUAL ALLPASS 90° PHASE COMBINER
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ALLPASS FILTER RESPONSE
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DUAL ALLPASS PHASE RESPONSE
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BIQUAD TRANSFER FUNCTION
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SECOND ORDER FILTER FUNCTIONS (BIQUADS)
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ACTIVE FILTER BIQUAD REALIZATIONS
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STEFFEN ALLPASS FILTER
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STEFFEN ALLPASS TRANSFER FUNCTION
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STEFFEN DUAL ALLPASS FILTERS

For decade BW:

350 Hz – 3.50 KHz
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DUAL ALLPASS FILTER – PHASE RESPONSES
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DUAL ALLPASS FILTER – RESPONSE COMPARISON
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NORMALIZED PROTOTYPE PARAMETERS

𝑇1(𝑆)  =  
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SECOND ORDER PROTOTYPE
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𝜔0  = 𝜔1𝜔2 = 1                                                                                                                          𝛾0  = 𝛾1𝛾2 = 1                                                                                                                          



17K5TRA

ALLPASS FILTER CONSIDERATIONS

• Baseband audio filters

− Active biquad designs, like Steffen

− Low Q poles and zeros

• RF filters

− Passive filters

− Non-minimum phase transfer cannot be realized as ladder

✓ Lattice networks with baluns

✓ Bridge-T networks

• Allpass filters always have pole-zero symmetry WRT  j axis

• First order:  𝑇(𝑆)  =
𝛾−𝑆

𝛾+𝑆
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2
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2
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LATTICE ALLPASS FILTERS
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CASCADE 1st ORDER to 2nd ORDER LATTICE 

• For applications here, the pole / zero Q is always < 0.5

• System is over-damped; so, poles and zeros are real and distinct

• Allows:  2nd order lattice equivalence to cascaded 1st order lattices

𝑇 𝑆 = 𝐴 𝑆 𝐵 𝑆 =
𝑆𝑎 −  𝑆

𝑆𝑎 +  𝑆
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𝑆2 + 𝑆𝑎 + 𝑆𝑏 𝑆 + 𝑆𝑎𝑆𝑏

𝜛𝑜 = 𝑆𝑎𝑆𝑏 𝑄 =
𝑆𝑎𝑆𝑏

𝑆𝑎 + 𝑆𝑏

𝜛𝑜

𝑄
=  𝑆𝑎 + 𝑆𝑏
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CASCADE 1st ORDER to 2nd ORDER LATTICE 
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ALTERNATE METHOD: CARRIER 90 ° PHASE SPLIT

FLIP-FLOP

FLIP-FLOP

2x Fc 180 ° 
PHASE

Fc

Fc

OUTPUT - 1

OUTPUT - 2

90°  PHASE 

DIFFERENCE, 

EQUAL 

AMPLITUDE

• Since carrier signal is single frequency, this method is 

attractive over lattice allpass networks.

• A 2x carrier frequency is needed. 

• Flip-flops divide the frequency and phase by 2.

• 180°/2 = 90°

• This technique, of course, will not work for a wideband 

signal, like the audio/baseband.
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LOWPASS BASEBAND AUDIO FILTER

• Lowpass active filters have high Q poles

• Cascaded biquad blocks are have higher sensitivity than passive

• Active filters based on passive designs have lower sensitivity:

− Gyrator substitution for inductors

− Frequency Dependent Negative Resistor (FDNR) 
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FOURTH ORDER PASSIVE LPF
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PASSIVE BASED ACTIVE LPF

GYRATORS PROVIDE 
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𝐿𝑒𝑞𝑣 = 𝐾2 𝐶
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1
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1K, 0.047uF1K, 0.038uF
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LPF RESPONSE
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RIORDAN’S GYRATOR – AS INDUCTOR   

𝑍𝐼𝑁 =
𝑍1𝑍3𝑍5
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BRUTON’S FDNR
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SUMMARY

• SSB (image reject) direct conversion blocks

• Audio band limiting filter is key to setting selectivity

• Phase difference networks are obtained from a pair of 

allpass delay equalizers

• Audio phase difference networks are realized with 

Steffen allpass filters

• Wideband RF passive phase difference networks are 

realized as a pair of 2nd order lattice filters (with 

balun)

• Active filter sensitivity discussed

• Audio band limiting active filters based on passive 

ladders are preferred for low sensitivity.
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