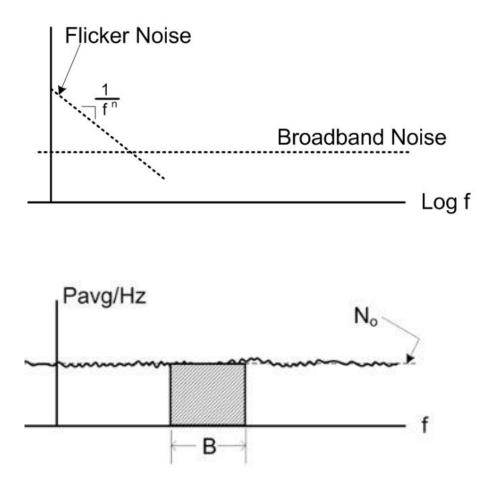
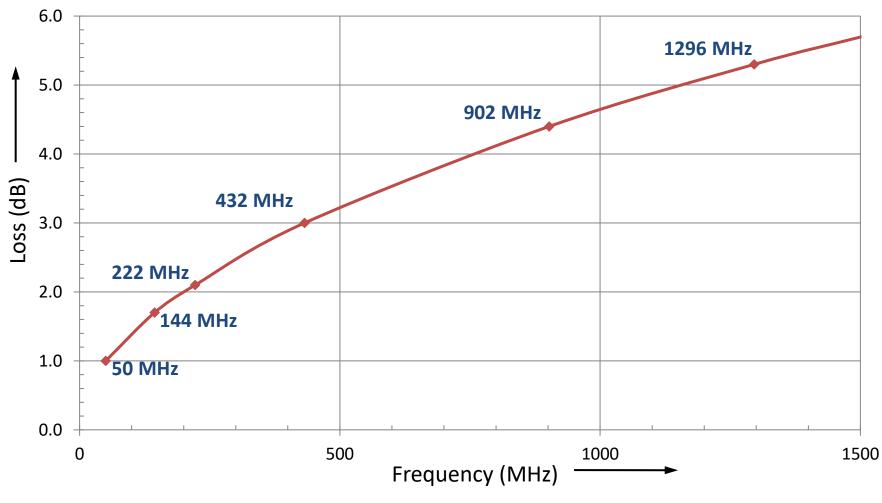
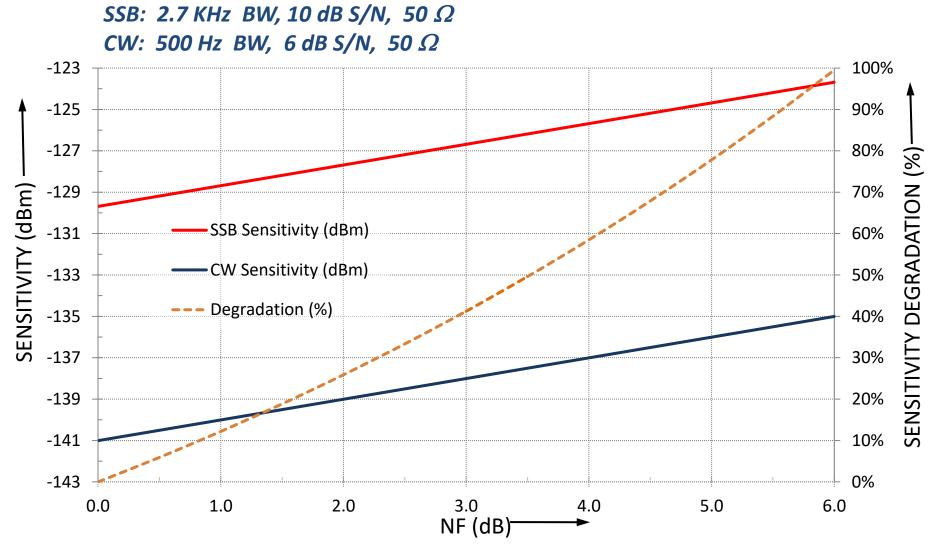

NOISE FIGURE


WHAT IS IT ? WHY IS IT IMPORTANT ? HOW TO MEASURE IT ?

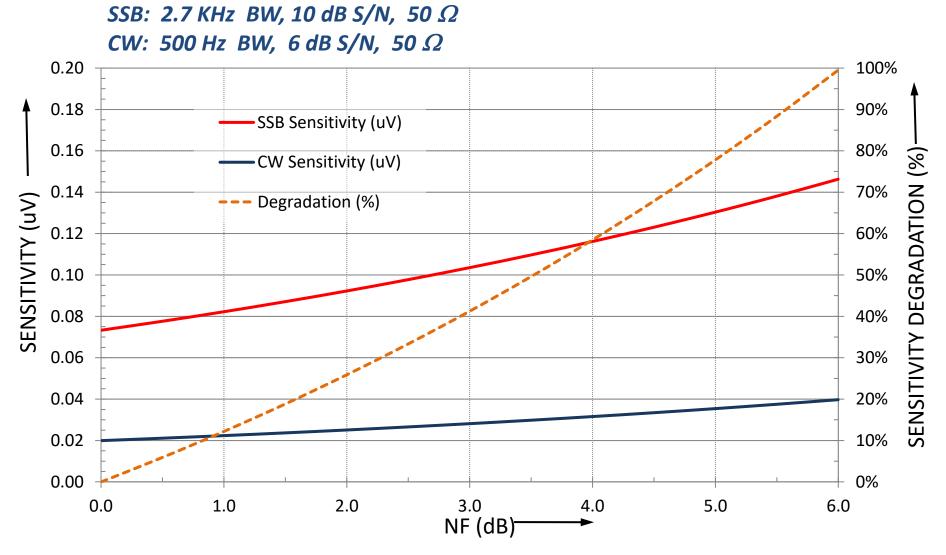
WHAT IS NOISE ?

- Random motion of electrons in conductors (resistors)
 - Thermal energy powers this motion
 - Energy is proportional to temperature (° Kelvin)
 - Boltzmann's constant: $k=1.38 \times 10^{-23}$ Joules/K

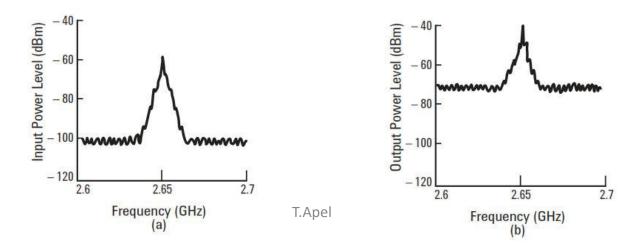

WHAT IS NOISE ?


- Thermal energy produces broadband noise
- Flicker noise variants originate in solid-state devices.
- Operational bandwidth sets how much noise power is captured.
- Narrowband modes can hear weaker signals than wideband modes. (CW vs SSB)

LOSS of LMR-400


(100 ft, with connectors)

SENSITIVITY vs NF



SENSITIVITY vs NF

WHY IS NOISE IMPORTANT ?

- Dissipative (resistive) loss introduces thermal noise
 - Coax loss
 - Attenuators
 - Filters
 - Signal to noise ratio is degraded
- Amplifiers
 - Provide gain to both input signal and input noise
 - Add noise
 - Signal to noise ratio is degraded

THERMAL NOISE FLOOR

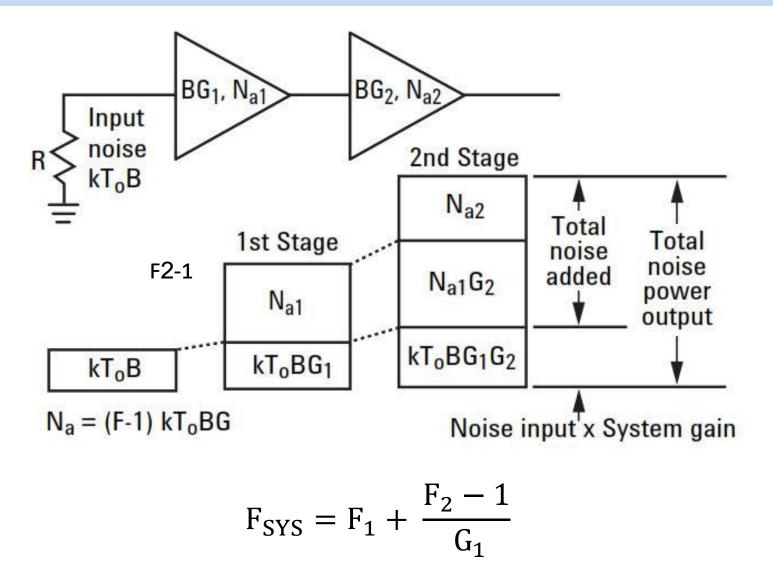
N_i=kTB

- N_i: Thermal noise power (input)
- K: Boltzmann's constant
- T: Temperature in Kelvin
- B: Bandwidth

NOISE FIGURE

• Original noise figure definition was based on power signal to noise ratio degradation:

$$F = \frac{S_i/N_i}{S_o/N_o}$$


$$F = \frac{S_i/N_i}{G S_i/(N_a + G N_i)}$$

$$F = \frac{N_a + G N_i}{G N_i} = \frac{N_a + kTBG}{kTBG}$$

$$NF_{dB} = 10 \log (F)$$

- Amplifiers contribute added noise, Na, in addition to gain, G.
- Noise figure of passive devices is simply the insertion loss.

NF of CASCADED STAGES

EFFECTIVE NOISE TEMPRATURE

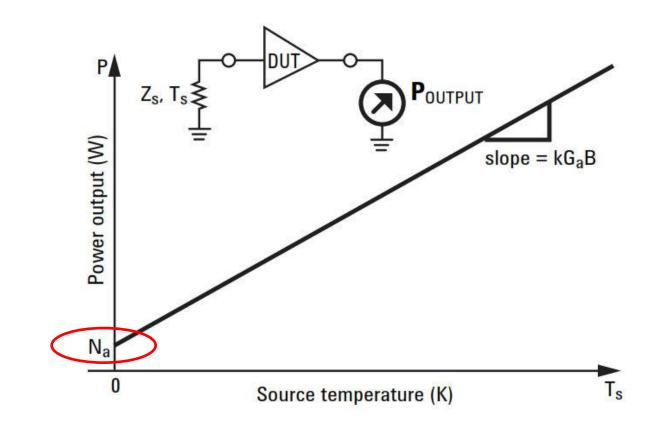
• The *effective* input noise temperature, Te, of an LNA is sometimes used to describe the noise performance:

$$T_e = \frac{N_a}{kGB}$$

• The effective input noise temperature is related to noise figure by:

$$\Gamma_e = \mathrm{T}_o \ (\mathrm{F} - 1)$$

where To = 290° K (ambient temp).


NF MEASUREMENT

$$ENR = \frac{T_{hot} - T_{cold}}{T_o}$$
$$ENR_{dB} = 10 \log(\frac{T_{hot} - T_{cold}}{T_o})$$

- A calibrated noise source is used to measure noise figure.
- The noise source provides two (hot and cold) states, calibrated over frequency.
- A pad can be used to provide a good source impedance. The Excess Noise Ratio (ENR) is reduced by the amount of the pad.

NOISE POWER LINEARITY

• A stepped source temperature with a known ENR allows the added noise, Na, to be determined.

Y FACTOR METHOD

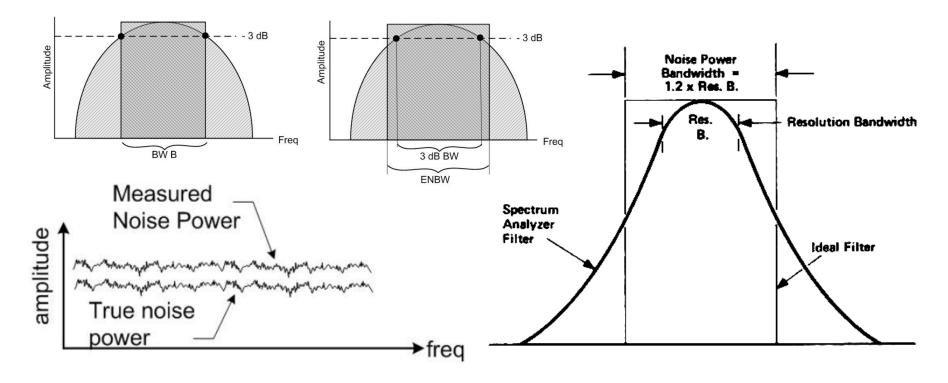
$$Y = \frac{N_{hot}}{N_{cold}}$$
$$Y = 10^{\left(\frac{Y_{dB}}{10}\right)}$$
$$N_a = kT_o BG_1 \left(\frac{ENR}{Y-1} - 1\right)$$
$$F = \frac{ENR}{Y-1}$$

- A stepped source temperature with a known ENR allows the added noise, Na, to be determined.
- Equations for $T_{cold} = T_o$.

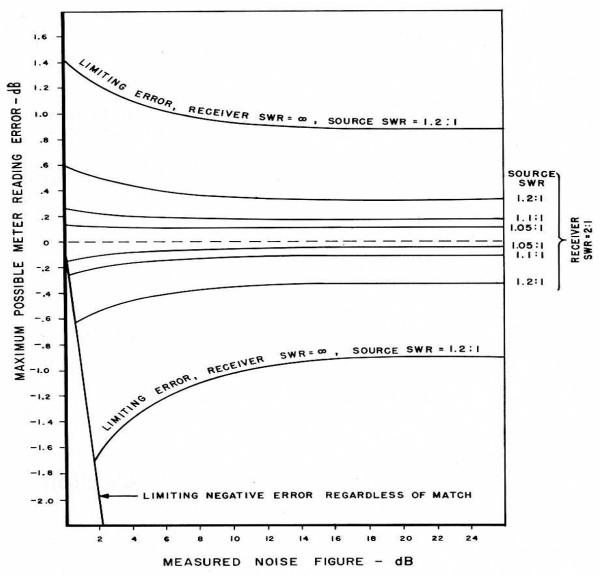
NOISE MEASUREMENTS

- Use a spectrum analyzer with a high gain preamp.
- Measure NF of preamp.
- Measure system NF of cascade of preamp with DUT
- The DUT NF is calculated from the cascade measurement:

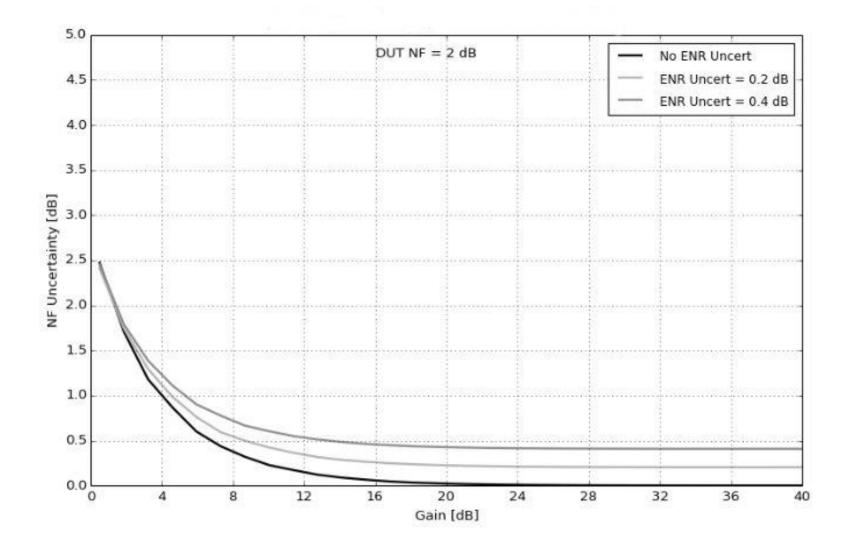
$$\mathbf{F_1} = \mathbf{F}_{SYS} - \frac{\mathbf{F_2} - 1}{\mathbf{G_1}}$$

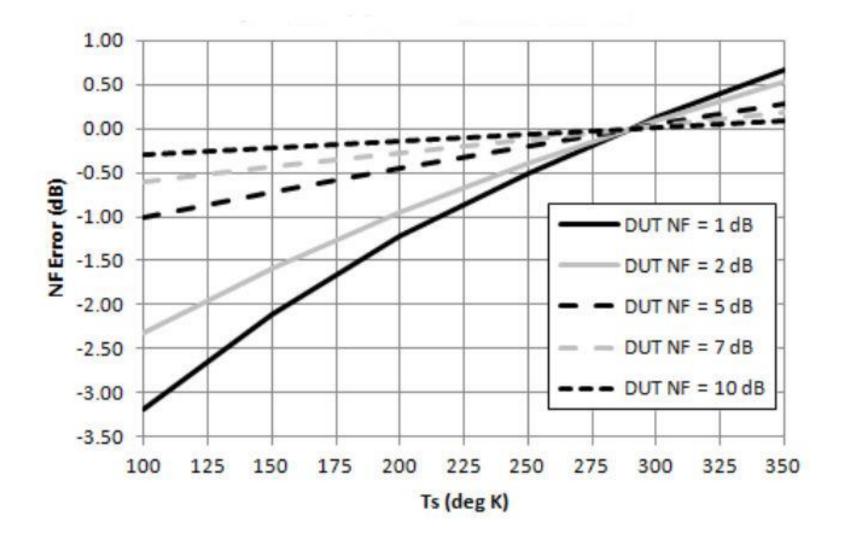

• Gain of DUT can be determined from ENR measurements:

$$G_{1} = \frac{N_{hot} - N_{cold} |output|}{N_{hot} - N_{cold} |input|}$$

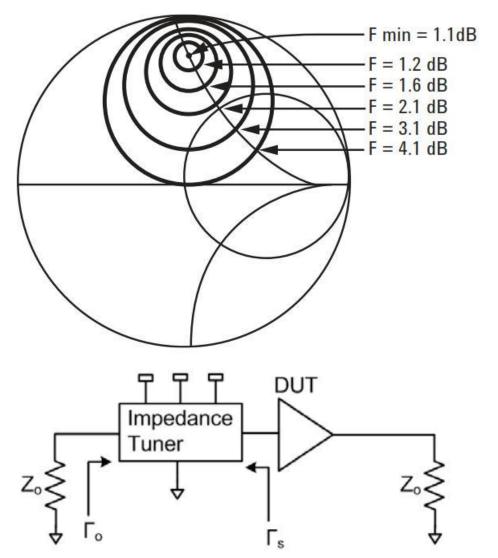

• The bandwidth of the spectrum analyzer is used in the noise factor calculations .

SPECTRUM ANALYZER EFFECTIVE NOISE BW


- Noise factor calculations are based on ideal filter shape.
- Actual filter shape in spectrum analyzer is not so sharp.
- HP suggests using a correction of 1.2 x resolution BW.


NF SOURCE MATCH ERROR

ENR ERROR



SYSTEM TEMP ERROR

LNA DEVELOPMENT CONSIDERATIONS

- Source pull provides:
 - Optimum noise match impedance
 - Noise factor contours
- Input match is trade-off between noise match, reflection (gain) match, and stability analysis.

NF CALC SPREADSHEET

2-Sep-2022	Updated - K5TRA	A		ORIG:	NO5K				
Y FACTOR CALC	Measured]					Friis CASCADE		
FREQ(MHz):	1000 MHz	To:	295 K				NFdb 12 :	0.2	1.05 lin
E.N.R:	4.66 dB	Thot =	1,158 K		_		NFdB 2 :	4.7	2.95 lin
N.S. ON:	-52.20 dBm	Y =	5.80 dB	3.80 lin		_	GdB1:	21.4	138.04 lin
N.S. OFF:	-58.00 dBm	NF =	0.19 dB	1.04 lin	13 K]	DUT-1 Noise =	0.14 dBF	1.03 lin
5623.000	fW =	- 82.50 dBm	Degrees K	Deg F		К=	1.381E-23		
0.437	pW =	-123.60 dBm	300.0	80.3				CASCADE	CALCULATION
6.610	nW =	-111.80 dBm	289.8	62.0				System F (lin)	2.94
5.000	uW =	-113.01 dBm	NF dB NF:	0.2 dB				Cascade F (lin)	1.04
0.005	mW =	-143.28 dBm	Te =	594 K		\mathbf{i}		DUT Gain (lin)	137.88
		_				<u> </u>		System NF	4.7 dB NF
Device Und	er Test AND	Spectrum Analy		6.0256E-06 W	→ Ylin	→ 3.802		Cascade NF	0.2 dB NF
ENR:	4.66 dB	Th 1,158 K	0.2 dB NF	1.5849E-06 W	3.802	Linear Y	<u>ENR dB - "Y" dB</u>	DUT Gain	21.40 dB
N.S. ON:	-52.20 dBm	6.0256E-09 W		Y - 1	2.802	Lin Y - 1	= 0.19 dB NF	DUT F	1.03
N.S. OFF:	-58.00 dBm	1.5849E-09 W	13 K	10 log Y-1	4.47 ďB	10Log Lin Y - 1		DUT NF	0.13 dB NF
To: 295 K			ENR: 4.66 dB		Tdeg k :	295 K		-198.6 dBm/Hz	
Spectrum Analyzer Measured ALONE				4.60 dB Y	1.91 dB NF	Bw, Hz :	1	kTB =	-198.6 dBm
ENR:	4.66 dB	Th 1,158 K	4.7 dB NF	4.30 dB Y	2.38 dB NF	Gain dB :	40	kTBG =	-158.6 dBm
N.S. ON:	-71.90 dBm	6.46E-11 W	2.00 lin Y	4.00 dB Y	2.86 dB NF	то :	295 k	Phot Powe	
N.S. OFF:	-74.90 dBm	3.24E-11 W	572 K	3.50 dB Y 3.73 dB NF		ENR: 15.5		-183.0 dBm/Hz	
DUT NoiseTemp =	9 K	0.13 dB NF		3.00 dB Y 4.68 dB NF				10,762	deg K
DUT Gain =	137.88	21.4 dB	21.4 dB						
				Thot: 10500		ENR = (Thot / Tcold) - 1		Thot:	10500
dBm/Hz :	-168.67	-108.0		Tcold : 295		-or-		Tcold :	295
BW, Hz :	↓ 1.00 -168.7)E+00 ↑ -108		ENR dB = 15.39 dB		ENR = (Th-To) / To		ENR dB =	15.39 dB
dBm =			1						
	(7.15	570 V		Noise Power : -110 dBm			Noise Energy: -159 dBm/Hz		
NF dB NF :	4.7 dB	576 K		Measn BW : 1.00E+04			BW : 1.00E+00		
N Temp, K :	1249 K	7.2 dB NF		Est NFdB :	24.0 dB	NFdB : 15.0 dB			
				Noise Energy:	-150.0 dBm/Hz]			

DOWNLOAD: <u>http://k5tra.net/TechFiles/NF_calc.xlsx</u>