Roadrunners Microwave Group

LINEAR ARRAYS

AN OVERVIEW

INTRO

- This presentation is intended for technical hams.
- One goal is to keep "out of the weeds" of excessive math by use of visuals to communicate the ideas. Some math is unavoidable.
- Another goal is to give insight into how linear arrays work and how they are designed.

OVERVIEW

- Element current causes radiation
- Element to element spacing and phase shift sets direction of maximum signal
- We will look at several types of linear arrays:
 - UNIFORM: equal amplitude drive to each element
 - BINOMIAL: element drive amplitudes proportional to polynomial coefficients (from binomial factors)
 - SCHELKUNOFF: superior gain and main to side lobe ratio from equally spaced nulls
 - YAGI-UDA: use of one driven element and mutual impedance to couple drive to parasitic elements

SIGNALS MUST ADD IN PHASE

UNIFORM ARRAY

- Equal element spacing d
- Propagation delay phase shift from element to element is: $\frac{2\pi}{\lambda}d$ (radians). Let's call this δ .
- Element to element drive is same amplitude but phase shifted by same amount: $\boldsymbol{\alpha}$.
- Radiation pattern can be expressed in terms of an array factor (AF).
- $AF = I_0 + I_1 e^{j\delta} \cos(\theta) + \alpha + I_2 e^{j2(\delta} \cos(\theta) + \alpha) + I_3 e^{j3(\delta} \cos(\theta) + \alpha) + I_{N-1} e^{j(N-1)(\delta} \cos(\theta) + \alpha)$
- Uniform drive: $I_0 = I_1 = I_2 = I_3 \dots = I_{N-1}$ (hence the name)
- Substitute: $\varphi = \delta \cos(\theta) + \alpha$ and rewrite AF
- AF = $\sum_{n=0}^{N-1} A_0 e^{jn\varphi}$

UNIFORM ARRAY - ARRAY FACTOR

SO WHAT ?

- The same $AF(\varphi)$ applies to all uniform arrays.
- It is periodic with 2π period repetition.
- The practical details are defined in $\varphi = \delta \cos(\theta) + \alpha$
- Broadside array: $\alpha = 0$, $\varphi = \delta \cos(\theta)$

SO WHAT ?

- The practical details are defined in $\varphi = \delta \cos(\theta) + \alpha$
- Endfire array: $\alpha = -\delta$ (or $+\delta$).
- $\varphi = \delta \cos(\theta) \delta$ $\boldsymbol{\varphi} = \boldsymbol{0}$ $\boldsymbol{\varphi} =$ $-\alpha$ 0.4 $\frac{\pi}{2}$ **AF(***φ***)** 0.0 N=90.5 0.3 0.2 0.1 0 - 1.2 0.8 0.0 100 This example: 110 120 130 $\alpha = -\frac{\pi}{2}$ 0.9 0.8 RADIATION $\delta = \frac{\pi}{2}$ PATTERN N= 9 N $-\pi$

UNIFORM ARRAY: EQUAL AMPLITUDE DRIVE

BINOMIAL ARRAY

- Equal element spacing d
- Element spacing propagation phase: $\delta = \frac{2\pi}{\lambda} d$ (radians).
- Element to element drive is phase shifted by same amount: $\boldsymbol{\alpha}$
- Current drive to elements is *NOT* uniform
- AF = $\sum_{n=0}^{N-1} A_n e^{jn\varphi}$
- The current drive for the n^{th} element is A_n .

BINOMIAL ARRAY

• AF =
$$\sum_{n=0}^{N-1} A_n e^{jn\varphi}$$

•
$$AF = A_0 + A_1 e^{j\varphi} + A_2 e^{j2\varphi} \dots + A_{N-1n} e^{j(N-1)\varphi}$$

- This looks like a polynomial if we let $e^{j\varphi}$ be represented as *x*. Then the AF becomes:
- AF = $\sum_{n=0}^{N-1} A_n x^n$, clearly a polynomial.
- A polynomial can be factored: $AF = A_{N-1} (x_1 - x) (x_2 - x) \dots (x_{N-1} - x)$
- A special case is the binomial: $AF = (1 + x)^N$
- So we can write: $AF = (1 + e^{j\varphi})^N$, note: nulls are $\pm \pi$

BINOMIAL ARRAY

- The coefficients (A_n) of the binomial polynomial are well known.
- Pascal's triangle shows these coefficients:

Ν		BINOMIAL COEFFICIENTS																	
0										1									
1									1		1								
2								1		2		1							
3							1		3		3		1						
4						1		4		6		4		1					
5					1		5		10		10		5		1				
6				1		6		15		20		15		6		1			
7			1		7		21		35		35		21		7		1		
8		1		8		28		56		70		56		28		8		1	
9	1		9		36		84		126		126		84		36		9		1

• The A_n coefficients represent the relative element currents.

BINOMIAL ARRAY - ARRAY FACTOR

BINOMIAL ENDFIRE ARRAY

- Endfire array: $\alpha = -\delta$ (or $+\delta$).
- $\varphi = \delta \cos(\theta) \delta$

BINOMIAL ARRAY: TAPERED AMPLITUDE DRIVE

- Main lobe bearing can be set by design.
- No side lobes and less gain than uniform array.

K5TRA

240

360

-70

-80

270

SO WHAT ?

- If a binomial array provides less gain than a uniform array, why is it important?
- The binomial array shows the representation of the AF as a polynomial.
- Other polynomials might provide better gain. For example, a Chebyshev polynomial can yield equal side lobe levels.
- Side lobes mean the array has nulls.
- The key to improved gain is low side lobe levels and equally spaced nulls.

- Both previous endfire examples had $\frac{\lambda}{4}$ spacing and $\left|\frac{\pi}{2}\right|$ phase offset.
- Hansen and Woodyard showed that the optimum directivity occurs at:

✓ Spacing =
$$\left[\frac{N-1}{N}\right] \left[\frac{\lambda}{4}\right]$$
 and

✓ Phase offset =
$$\left|\frac{\pi}{2} + \frac{2.94}{N}\right|$$
.

• The sidelobe levels will degrade somewhat from a $\frac{\lambda}{4}$ spacing and $\left|\frac{\pi}{2}\right|$ phase offset design.

SCHELKUNOFF ARRAY

- S.A Schelkunoff recognized that Array Factors for discrete arrays could be represented as polynomials.
- The expression of the AF polynomial in factored form shows where the nulls occur:

$$\mathsf{AF} = A_{N-1} (x_1 - x) (x_2 - x) \dots (x_{N-1} - x).$$

- The nulls are at $x = x_i$ for i between 1 and N-1. The nulls are called the roots of the polynomial.
- Since |AF| must be between 0 and 1, $|x_i| = 1$, for all i.
- This is consistent with $x = e^{j\varphi}$. All values of x are on the unit circle.

SCHELKUNOFF ARRAY

- The Schelkunoff array places nulls with equal spacing across the visable range of the AF.
- For example, let's consider a seven element endfire array: π

$$\alpha = -\delta = -\frac{\pi}{2}$$
, so visible range of φ is 0 to $-\pi$ (-180°).

• The N-1 (6) nulls are places in 30° steps along the half circle from 0° to -180°. In radians, these are equal $\pi/6$ steps from 0 to $-\pi$.

SCHELKUNOFF ARRAY - ARRAY FACTOR (ϕ)

SCHELKUNOFF ARRAY - ARRAY FACTOR (θ)

SCHELKUNOFF ARRAY - RADIATION PATTERN

YAGI-UDA ARRAY

- Yagi-Uda arrays are endfire and usually have only one driven element.
- Currents in other elements are driven by coupling through mutual impedance with the driven element.
- The relative phase and magnitude of the passive element currents is controlled by element spacing and length.
- Shintaro Uda invented this array type in 1926. It should rightly be called an Uda Array

DIPOLE CENTER FEED IMPEDANCE

PASSIVE ELEMENT MUTUAL IMPEDANCE

PASSIVE ELEMENT COUPLED CURRENT PHASE

- Equal length, lightly coupled elements have currents 180° out of phase
- Tight coupling causes current phase to shift from 180°
- Coupled element length can make the phase shift greater than or less than 180°
- Current lag (- phase): director element
- Current lead (+phase): reflector element

PASSIVE ELEMENT COUPLED CURRENT MAGNITUDE

YAGI-UDA ARRAY - 6 ELEMENT EXAMPLE

SUMMARY

- Element current causes radiation.
- Array pattern is sum of signal from all elements.
- Amplitude and phase from each element is controlled by spacing and drive current.
- Array Factors provide a convenient tool for design.
- A selection of examples have been presented:
 - **Uniform** (equal drive currents)
 - **Binomial** (binomial coefficient drive currents)
 - Schelkunoff (equal spaced AF nulls)
 - Yagi-Uda (parasitic element drive through mutual impedance coupling)
- The arrays considered, all have elements placed along the x axis. The techniques discussed, can be applied simultaneously to elements along the other axes to create "curtain arrays".