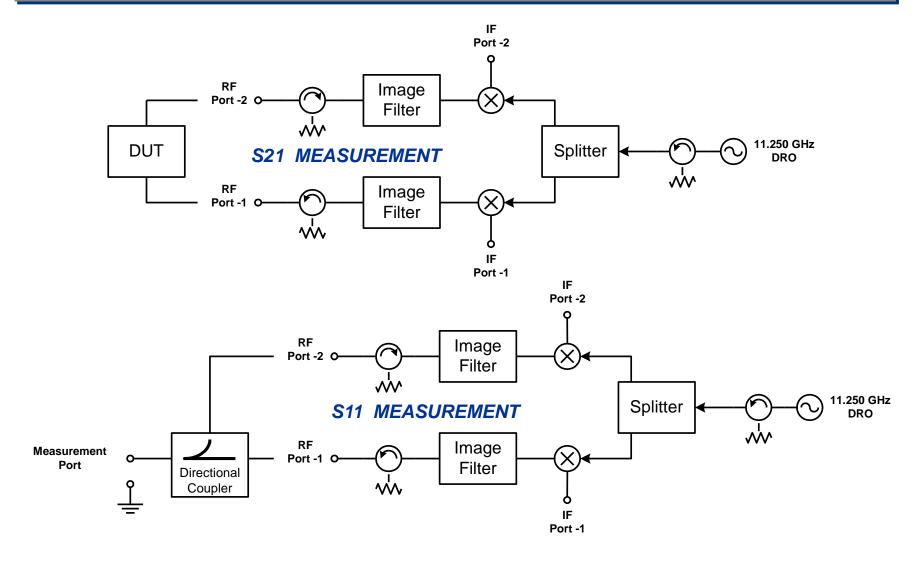
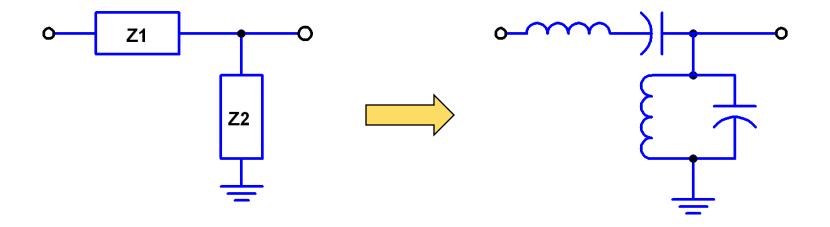
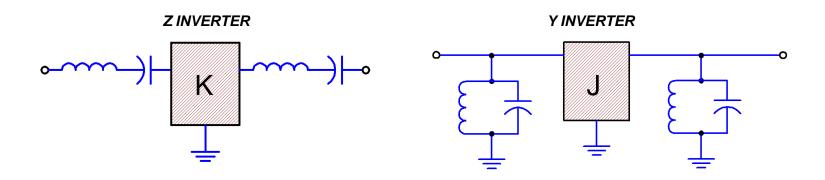

EVANESCENT MODE CIRCULAR WG FILTERS



MOTIVATION: NEED IMAGE FILTERS for X-BAND TEST-SET

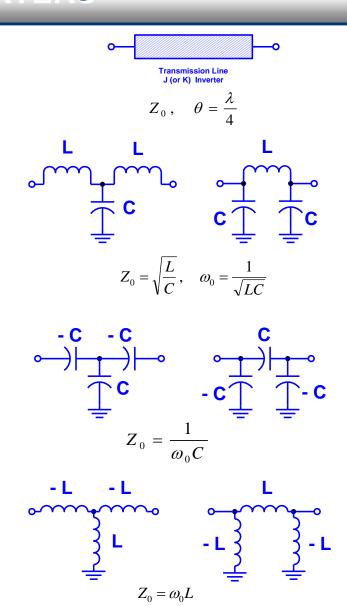

X-BAND TEST-SET CONFIGURATIONS

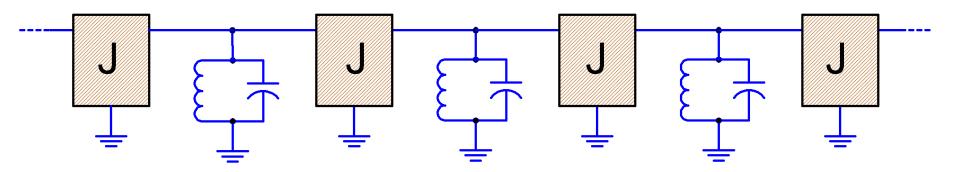
X-BAND TEST-SET



LADDER FILTER BASIC BUILDING BLOCK

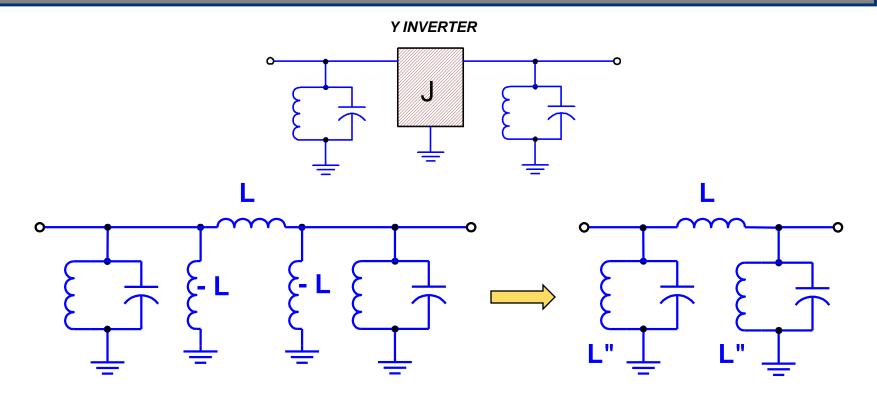
- Passband: Z1 ⇒ short and Z2 ⇒ open
- Stopband: Z1 ⇒ open and Z2 ⇒ short


J and K INVERTERS PROVIDE REUSE OF RESONATOR TYPE

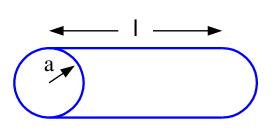

- Impedance inverter (K) with a series resonator behaves like a parallel resonator
- Admittance inverter (J) with a parallel resonator behaves like a series resonator
- Impedance/admittance inverter interface between similar resonators provides maximum stopband attenuation
- Most common impedance inverter is transmission line that is an odd multiples of $\lambda/4$

IMPEDANCE/ADMITTANCE INVERTERS

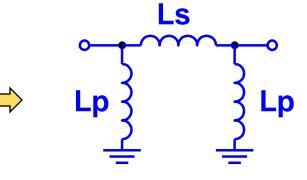
- Impedance (or admitance) inverters can be used to convert parallel resonance to a series resonance characteristic.
- The canonic impedance inverter is the $\lambda/4$ line.
- LC forms provide moderate bandwidth Z inversion.
- Capacitive T and π sections are for narrow band applications. Negative C or L is absorbed into resonator (cancels some positive C or L).



BANDPASS FILTER STRUCTURE WITH J INVERTERS


- Filters are formed as cascade of parallel resonators and inverters
- How do we realize a structure like this in WG?

BANDPASS FILTER WITH INDUCTIVE J INVERTERS


- Negative inductors of inverter cancel some of the resonator inductance
- Inverter admittance/impedance sets coupling between resonators. In this case, coupling is set by (ω L)⁻¹

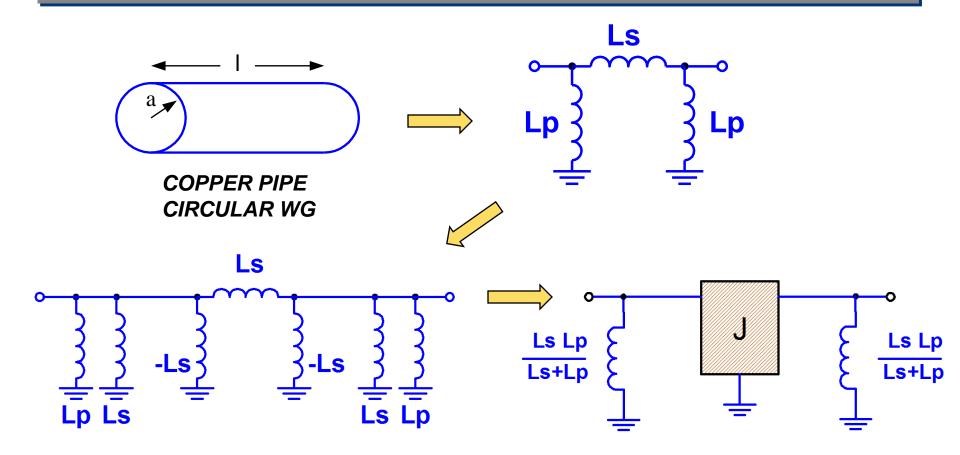
EVANESCENT WG MODEL

$$a = inside \ radius \ in \ mm$$

 $l = length \ of \ WG \ section$
 $F_c = 1.8412 \ imes rac{300}{2\pi \ a}$

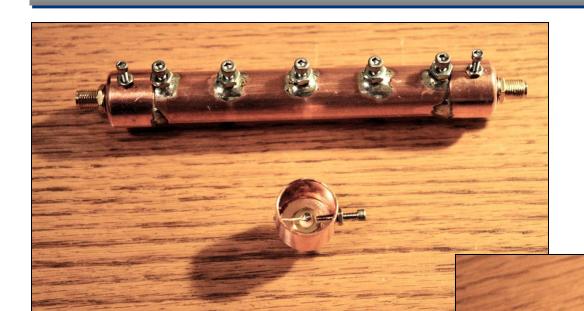
$$Ls = \frac{X_0 \sinh{(\gamma l)}}{2\pi freq}$$

$$1 \left[(F_c)^2 \right]$$


$$\gamma = \frac{1}{\lambda_0} \sqrt{\left[\left(\frac{F_c}{F_0} \right)^2 - 1 \right]}$$

- Propagation falls off quickly
- Behavior is reactive (inductive)

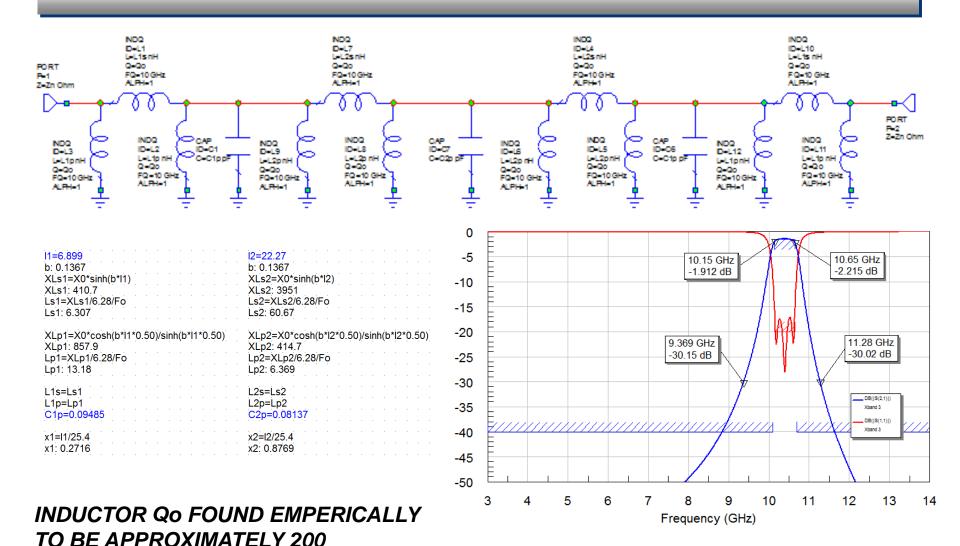
$$X_0 = \frac{377}{\sqrt{[\Gamma_1 \Gamma_2]^2 - 1}}$$


$$X_0 \sim 377 \Omega$$

EVANESCENT WG SECTIONS PROVIDE J INVERTER and RESONATOR L

- RESONATOR C CAN BE ADDED WITH TUNING SCREWS
- SCREW SPACING SETS Ls (SETS COUPLING)

EVANESCENT WG FILTER CONSTRUCTION



- Operation BELOW cutoff frequency
- 0.5" Cu pipe for X-band (actual ID = 0.565")

- 4-40 tuning screws
- Tapped holes and soldered brass nuts
- Stainless locking nuts
- Coupling loop with 2-56 tuning
- 0.25" 4-40 stand-off mounting

EVANESCENT WG FILTER ANALYSIS 6th ORDER EXAMPLE

DESIGN TABLES N= 2, 3, & 4

N=4

%BW	BW(MHz)	l1(mil)	l2(mil)	l3(mil)	C1(pF)	C2(pF)	Loss(dB)	RetLoss(dB)	F30L(GHz)	F30H(GHz)
5	500	258	882	985	0.096	0.081	3.41	16.85	9.7	11.0
3	300	311	1018	1119	0.091	0.081	4.72	18.31	10.0	10.8
2	200	345	1109	1217	0.089	0.081	5.76	20.8	10.1	10.7
1	100	345	1150	1282	0.089	0.081	5.63	34.18	10.1	10.6
0.5	50	356	1190	1331	0.088	0.081	6.14	44.78	10.2	10.6

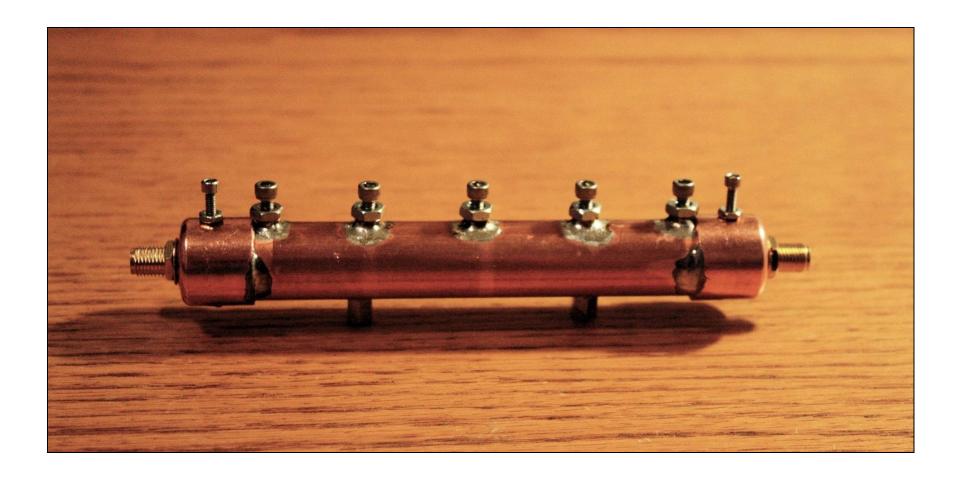
N=3

%BW	BW(MHz)	l1(mil)	l2(mil)	C1(pF)	C2(pF)	Loss(dB)	RetLoss(dB)	F30L(GHz)	F30H(GHz)
5	500	272	875	0.095	0.081	2.20	16.44	9.4	11.3
3	300	333	1035	0.089	0.081	3.50	14.99	9.8	10.9
2	200	359	1113	0.088	0.081	3.89	17.56	9.9	10.8
1	100	394	1225	0.086	0.081	4.84	21.00	10.1	10.7
0.5	50	424	1298	0.085	0.081	5.70	29.76	10.2	10.6

N=2

%BW	BW(MHz)	l1(mil)	l2(mil)	C1(pF)	Loss(dB)	RetLoss(dB)	F30L(GHz)	F30H(GHz)
5	500	254	752	0.097	1.06	14.43	7.0	12.4
3	300	300	882	0.092	1.36	16.57	8.4	11.8
2	200	338	977	0.089	1.69	18.52	9.0	11.5
1	100	412	1152	0.086	2.73	17.93	9.7	11.0
0.5	50	441	1240	0.085	3.36	19.02	9.8	10.9

DESIGN TABLES N= 5, & 6


N=6

%BW	BW(MHz)	l1(mil)	l2(mil)	l3(mil)	l4(mil)	C1(pF)	C2(pF)	C3(pF)	Loss(dB)	RetLoss(dB)	F30L(GHz)	F30H(GHz)
5	500	226	834	983	1003	0.110	0.081	0.081	5.26	24.13	9.9	10.7
3	300	291	987	1120	1141	0.093	0.081	0.081	7.37	25.86	10.1	10.7
2	200	310	1059	1218	1253	0.091	0.081	0.081	9.36	29.91	10.2	10.6
1	100	306	1082	1274	1314	0.091	0.081	0.081	8.93	49.56	10.2	10.6
0.5	50	210	884	1425	1532	0.095	0.080	0.081	8.91	46.15	10.2	10.6

N=5

%BW	BW(MHz)	l1(mil)	l2(mil)	l3(mil)	C1(pF)	C2(pF)	C3(pF)	Loss(dB)	RetLoss(dB)	F30L(GHz)	F30H(GHz)
5	500	230	832	973	0.101	0.081	0.081	3.61	23.87	9.8	10.9
3	300	276	962	1101	0.094	0.081	0.081	4.92	25.36	10.0	10.8
2	200	293	1021	1173	0.093	0.081	0.081	5.62	33.02	10.1	10.7
1	100	334	1138	1308	0.089	0.081	0.081	7.92	39.68	10.2	10.6
0.5	50	328	1138	1323	0.089	0.081	0.081	7.68	51.7	10.2	10.6

EVANESCENT WG FILTER

